
Speeding up Adaptation of Web Service Compositions
Using Expiration Times

John Harney
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA 30602

jfh@cs.uga.edu

Prashant Doshi
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA 30602

pdoshi@cs.uga.edu

ABSTRACT
Web processes must often operate in volatile environments
where the quality of service parameters of the participating
service providers change during the life time of the process.
In order to remain optimal, the Web process must adapt
to these changes. Adaptation requires knowledge about the
parameter changes of each of the service providers and us-
ing this knowledge to determine whether the Web process
should make a different more optimal decision. Previously,
we defined a mechanism called the value of changed infor-
mation which measures the impact of expected changes in
the service parameters on the Web process, thereby offering
a way to query and incorporate those changes that are useful
and cost-efficient. However, computing the value of changed
information incurs a substantial computational overhead. In
this paper, we use service expiration times obtained from
pre-defined service level agreements to reduce the compu-
tational overhead of adaptation. We formalize the intuition
that services whose parameters have not expired need not be
considered for querying for revised information. Using two
realistic scenarios, we illustrate our approach and demon-
strate the associated computational savings.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based Services; G.3 [Probability
and Statistics]: [Markov processes]

General Terms
Algorithms, Theory

Keywords
Web services, Adaptation, Volatile environments, Expira-
tion times

1. INTRODUCTION
Business environments in which Web services (WS) must

function are seldom static. Key characteristics of service
providers such as the reliability rate of their services and
other quality-of-service parameters, which may affect WS
compositions tend to be volatile. As a concrete example,
consider a supply chain in which two suppliers compete for

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

orders from a large manufacturer. The sequence in which
the manufacturer uses the services of the two suppliers de-
pends on the probability with which the suppliers usually
satisfy the orders and the cost of using them. If the pre-
ferred supplier’s rate of order satisfaction drops suddenly
(due to unforeseen circumstances), a cost-conscious manu-
facturer should replace it with the other supplier to remain
optimal.

The key components for maintaining an adaptive Web
process – a business process with WSs as its components –
are then: (i) up-to-date knowledge of the current parameters
of the service providers, and (ii) a measure of the subopti-
mality of the current Web process. Both these aspects come
with their own attendant challenges spanning from how to
obtain the new service parameters and from which providers
to finding approaches that associate a measure of optimal-
ity to the Web process. In addition, if there is a cost to
obtaining the new information, not all changes to the Web
process composition effected by the revised information may
be worth the cost.

Prevalent approaches to automatically composing Web
processes use methods within classical planning [13] and
decision-theoretic planning [4]. These rely on pre-specified
models of the process environment to generate the WS com-
positions. In [5], Harney and Doshi introduced a mechanism
called the value of changed information (VOC) by which the
expected impact of the revised information on the Web pro-
cess could be calculated. The approach involved selectively
querying the service providers for their revised parameters.
If the change brought about by the revised information was
worth the cost of obtaining it, the Web process was refor-
mulated.1 Thus, the VOC mechanism avoids “unnecessary”
queries in comparison to the naive approach of, say, periodi-
cally querying all the service providers. While this approach
results in adaptive Web processes that incur lesser costs in
simulated volatile environments [5], computationally the ap-
proach turns out to be inefficient.

In this paper, we improve on the previous VOC based
approach to adaptation by using the insight that service
providers are often able to guarantee that the parameters of
their services will persist for some amount of time. Thus,
we need not consider querying those service providers for
revised information whose previously obtained information
has not expired. We incorporate this insight into the VOC
formulation, and call the new approach, the value of changed

1In general, new information may require a complete re-
composition of the Web process to remain optimal, though
sometimes only local changes may be sufficient.

information with expiraton times (VOCE). Because VOCE

focuses the computations on only those services whose pa-
rameters could have changed, it is computationally more
efficient than the traditional VOC, while resulting in Web
processes that are as cost-efficient in volatile environments
as those in the previous approach.

We theoretically show that the adaptation of the Web pro-
cesses using VOCE is as good as the one using VOC and em-
pirically demonstrate that, on average, the approach based
on VOCE is computationally less intensive. In the worst
case, the two approaches exhibit identical asymptotic com-
plexities. For the purpose of empirical evaluation, we utilize
two realistic Web process scenarios - a supply chain and a
clinical administrative pathway. Within our service-oriented
architecture (SOA), we represent the manufacturer’s and
hospital’s Web processes using WS-BPEL [6], and the provider
services as well as a service for computing the VOCE using
WSDL [12].

2. RELATED WORK
Recently, researchers are increasingly turning their atten-

tion to managing processes in volatile environments. Au et
al. [2] obtain current parameters about the Web process by
querying Web service providers when the parameters expire.
While this is similar in concept to our approach, plan recom-
putation is assumed to take place irrespective of whether
the revised parameter values are expected to bring about a
change in the composition. This may lead to frequent unnec-
essary computations. In [3], several alternate plans are pre-
specified at the logical level, physical level, and the runtime
level. Depending on the type of changes in the environment,
alternative plans from these three stages are selected. While
capable of adapting to several different events, many of the
alternative pre-specified plans may not be used making the
approach inefficient, and there is no guarantee of optimal-
ity of the resulting Web processes. In a somewhat different
vein, Verma et al. [11] explore adaptation in Web processes
in the presence of coordination constraints between different
WSs. We do not consider such constraints here.

In [10], graph based techniques were used to evaluate the
feasibility and correctness of changes at the process instance
level. Muller et al. [8] propose a workflow adaptation strat-
egy based on pre-defined event-condition-action rules that
are triggered when a change in the evironment occurs. While
the rules provide a good basis for performing contingency
actions, they are limited in the fact that they cannot ac-
count for all possible actions and scenarios that may arise in
complex workflows. Additionally, the above work does not
address long term optimality of process adaptation. Doshi
et al. [4] offers such a solution using a technique that man-
ages the dynamism of Web process environments through
Bayesian learning. The process model parameters are up-
dated based on previous interactions with the individual
Web services and the composition plan is regenerated us-
ing these updates. This method suffers from being slow in
updating the parameters, and the approach may result in
plan recomputations that do not bring about any change in
the Web process.

3. BACKGROUND: WEB PROCESS ADAP-
TATION USING VOC

Several characteristics of the service providers who partic-

ipate in a Web process may change during the life-cycle of a
process. For example, in a supply chain, the cost of using the
preferred supplier’s services may increase, and/or the proba-
bility with which the preferred supplier meets the orders may
reduce. Not all updates of the parameters cause changes in
the process composition. Furthermore, the change effected
by the revised information may not be worth the cost of
obtaining it. In light of these arguments, the VOC-based
approach [5] provides a method that will suggest a query,
only when the queried information is expected to be suffi-
ciently valuable to obtain.

While the approach is applicable to any model based pro-
cess composition technique, for the purpose of illustration,
a decision-theoretic planning technique is utilized for com-
posing Web processes [4]. Decision-theoretic planners such
as MDPs [9] model the process environment, WP , using a
sextuplet:

WP = 〈S, A, T, C, H, s0〉

where S = Πn
i=1X

i, where S is the set of all possible states
factored into a set, X, of n variables, X = {X1, X2, . . . , Xn},
which together indicate the state of the Web process; A is
the set of all possible actions representing the WS invoca-
tions; T is a transition function, T : S × A → ∆(S), which
specifies the probability measure over the next state given
the current state and action, and denotes the uncertain ef-
fect of WS invocations on the process; C is a cost function,
C : S × A → R, which specifies the cost of invoking each
WS from each state; H is the period of consideration over
which the composition must be optimal, also known as the
horizon, 0 < H ≤ ∞; and s0 is the starting state of the
process.

The VOC formulation adopts a myopic approach to infor-
mation revision, in which a single provider is queried at a
time for new information. For example, this would trans-
late to asking, say, only the preferred supplier for its current
rates of order satisfaction, as opposed to both the preferred
supplier and the other supplier, simultaneously. The revised
information may change the probability with which the pre-
ferred supplier is known to satisfy the order, contained in
the transition function.

Let Vπ∗(s|T ′) denote the expected cost of following the
optimal policy, π∗, from the state s when the revised tran-
sition function, T ′ is used. Since the actual revised tran-
sition probability is not known unless we query the service
provider, computing the VOC involves averaging over all
possible values of the revised transition probability, using
the current belief distributions over their values. These dis-
tributions may be provided by the service providers through
pre-defined service-level agreements or they could be learned
from previous interactions with the service providers. Let
Vπ(s|T ′) be the expected cost of following the original pol-
icy, π from the state s in the context of the revised model
parameter, T ′. Note that the policy, π, is optimal in the
absence of any revised information. The expected value of
change due to the revised transition probabilities is formu-
lated as:

V OCT ′(·|a,s′)(s) =
∫
p

Pr(T ′(·|a, s′) = p)[Vπ(s|T ′)

−Vπ∗(s|T ′)] dp
(1)

The subscript to V OC, T ′(·|a, s′), denotes the revised in-
formation inducing the change. Intuitively, Eq. 1 represents
how badly, on average, the original policy, π, performs in

the changed environment as formalized by the MDP model
with the revised T ′.

The probability p represents a revised probability of tran-
sition on performing a particular action, and Pr(T ′(·|a, s′) =
p) represents the belief over the transition probabilities. No-
tice that in order to calculate the VOC, we must compute
the revised values, Vπ(s|T ′) and Vπ∗(s|T ′), for all possible p
and average over their difference based on our distribution
over p. Computing Vπ(s|T ′), which represents the expected
cost of following the policy π from state s is straightforward
since it does not involve the optimization operation over all
actions. However, the revised value function Vπ∗(s|T ′) is
computed by solving the MDP which may become compu-
tationally expensive with large problems.

Analogous to the value of perfect information, VOC is
guaranteed to be non-negative at each state of the Web pro-
cess. For the proof see [5].

Since querying the model parameters and obtaining the
revised information may be expensive, we must undertake
the querying only if we expect it to pay off. In other words,
we query for new information from a state of the Web pro-
cess only if the VOC due to the revised information in that
state is greater than the query cost. More formally, we query
if:

V OCT ′(·|a,s′)(s) > QueryCost(T ′(·|a, s
′))

where T ′(·|a, s′) represents the distribution we want to query.
In order to formulate and execute the Web process, we

simply look up the current state of the Web process in the
policy and execute the WS prescribed by the policy for that
state. The response of the WS invocation determines the
next state of the Web process. The composition of the Web
process is adapted to fluctuations in the model parameters
by interleaving the formulation with VOC computations.
The algorithm for the adaptive Web process composition
is shown in Fig. 1.

Algorithm for adaptive Web process
Input: π∗ //optimal policy, s0 //initial state
s← s0

while goal state not reached
if VOC∗(s) > QueryCost(T ′(·|a, s′))

Query service provider, a∗ (Eq. 2), for
new probabilities
Form the new transition function, T ′

Calculate policy π∗ using the new MDP model
with T ′

a← π∗(s)
Execute the Web service a
Get response of a and construct next state, s’
s← s′

end while
end algorithm

Figure 1: Algorithm for adapting a Web process to
revised information and executing it.

For each state encountered during the execution of the
Web process, a service provider is queried for new informa-
tion if the query is expected to bring about a change in the
Web process that exceeds the query cost. For example, in
the supply chain process, we select and query a supplier for
its current rate of order satisfactions. Of all the suppliers,
we select the one whose possible new rate of order satisfac-
tion is expected to bring about the most change in the Web

process, and this change exceeds the cost of querying that
provider. In other words, we select the service provider as-
sociated with the WS invocation, a∗, to possibly query for
whom the VOC is maximum:

V OC
∗(s) = max

a∈A
V OCT (·|a,s′)(s) (2)

Thus, a∗ = argmax
a∈A

V OCT (·|a,s′)(s)

Calculating the VOC∗ as shown in Eq. 2 is computa-
tionally intensive. It involves iterating over all the service
providers and computing the VOC for each. Because there
could be many service providers participating in the Web
process, a more selective approach is needed to obtain com-
putational efficiency. We present one such method next.

4. MOTIVATING SCENARIOS
In order to illustrate our approach we present two example

scenarios:
MS XBox 360 Supply Chain Our first scenario is a
simplified version of the supply chain employed by Microsoft
(MS) for the production of its XBox 360 gaming console [7].
MS engages a variety of suppliers and contract manufactur-
ers to deliver the components that are crucial to the pro-
duction of the gaming console. Because MS outsources key
manufacturing operations, it needs to retain tight control
over those external processes to ensure that the suppliers
and contract manufacturers meet service level agreements.

and order consoles
Reply = Yes

Console

and order GPUs
Reply = Yes

Check Preferred Supplier Avail

Reply = Yes
and order GPUs and order GPUs

Reply = Yes

Check Preferred Supplier Avail
and order consoles
with prob. 0.5

Check Other Supplier Avail
and order consoles

Reply = Yes

Preferred

 Order
 Receive

Other
SupplierSupplier Supplier

Preferred Other
Supplier

Market
Spot

Market
Spot

Contract
GPU

Mfr. Mfr.
Contract

Check Other Supplier Avail

with prob. 0.7

with prob. 0.8

Check Spot Market Avail

with prob. 1.0

Check Spot Market Avail

with prob. 1.0

with prob. 0.4

Figure 2: Interactions between the business part-
ners in the Microsoft XBox 360 supply chain. We
have used example probability values to aid under-
standing.

In Fig. 2, we focus on a simplified supply chain scenario in
which MS chooses a contracted console manufacturer, reson-
sible for assembling the console, and a contracted graphics
processing unit (GPU) manufacturer who is responsible for
building the advanced GPU chips. We assume that the invo-
cations will be carried out in a sequential manner, beginning
with the GPU followed by the console. 2 We assume that
each of the manufacturers has the option to order their com-
ponents from three different suppliers. They may order from
a preferred supplier with which they usually interact. The
manufacturers may also order the parts from other suppliers
or resort to the spot market. A costing analysis reveals that
the least cost will be incurred if the order is satisfied by the
preferred supplier. They will incur increasing costs as they

2Notice that the process may also be run in parallel.

try to fulfill the orders by procuring the console and GPU
chips from another supplier and the spot market.

Clearly, MS and its manufacturers must choose from sev-
eral candidate processes. For example, they may initially
attempt to satisfy the order of GPU chips from the pre-
ferred supplier. If the preferred supplier is unable to satisfy
the order, MS may resort to ordering parts from some other
supplier. Another potential process may involve bypassing
the preferred supplier, since MS strongly believes that the
preferred supplier will not satisfy the order. It may then
initiate a status check on some other supplier. These exam-
ple processes reveal two important factors for selecting the
optimal one. First, MS must accurately know the certainty
with which the console and GPU chip orders will be satis-
fied by each of its supplier choices. Second, at each stage,
rather than greedily selecting an action with the least cost,
MS must select the action which is expected to be optimal
over the long term.
Patient Transfer A hospital receives a patient who has
complained of a particular ailment. The patient is first
checked into the hospital and then seen by one of the hos-
pital’s physicians. He may, upon examination, decide to
transfer the patient to a secondary care provider for special-
ist treatment. For this example, we assume that the hospital
has a choice of four secondary care givers to select from with
differing vacancy rates and costs of treatment, with the pre-
ferred one having the best vacancy rate and least cost (see
Fig. 3).

Similar to our previous example, several candidate Web
processes present themselves. For example, the physician
may decide not to transfer the patient, instead opting for in-
house treatment. However, if the physician concludes that
specialist treatment is required, several factors weigh in to-
ward selecting the secondary care giver. These include, the
typical vacancy rates of the care givers, costs of treatment,
and geographic proximity.

Check vacancy

Select

Caregiver3

Caregiver4

Caregiver2
Secondary

Secondary

Secondary

Reply = Yes
with
prob. 0.5

Reply = Yes

Check−In
Insurance
Validation

Caregiver
Secondary
Preferred

Caregiver
Secondary

Physical
Exam

Patient

No transfer
with prob 0.2

prob. 0.8
with
Transfer

Reply = Yes

prob. 0.7
with

with
prob. 0.4

vacancyCheck
Reply = Yes

prob. 0.2
with

vacancyCheck

vacancyCheck

Figure 3: The patient transfer clinical pathway for a
primary caregiver. As before, we have used example
probability values to aid understanding.

The process flows in both the supply chain and the patient
transfer scenarios hinge on the rates of order satisfaction and
vacancy rates, respectively. If the order satisfaction rate of
the preferred supplier or the vacancy rate of the preferred
secondary caregiver drops, the processes need to be adapted
to remain cost-effective.

5. VOCE: VOC WITH EXPIRATION TIMES
As we mentioned previously, in order to select a service

provider for querying for revised information, the previous

approach [5] required iterating over all the WSs and selecting
the one which results in the largest VOC. For large Web
processes, there could be several participating WSs, making
the process of selection computationally intensive.

To address this challenge, we use the insight that ser-
vice providers are often able to guarantee that their reliabil-
ity rates and other quality-of-service parameters will remain
fixed for some time, texp, after which they may vary. WS
providers may define texp in a WS-Agreement document [1]
as we show later.

Given a way to keep track of guarantees of which WSs
have expired, we may compute the VOC for only those
service providers whose guarantees have expired and select
among them. This is because a possible query to the others
will return back parameter values that are unchanged from
those used in formulating the current Web process. Thus
such queries will cause no adaptation in the Web process,
and may be safely ignored.

5.1 Definition
In keeping with [5], we adopt a myopic approach to in-

formation revision, in which we query a single provider at
a time for new information. To keep matters simple, we
assume that the service providers will be queried for their
current rates (probabilities) with which they are able to sat-
isfy their incoming orders or requests. This new information
may cause a change in the transition function of the model
of the process environment, as shown in Section 3.

In a departure from [5], we assume that, in addition to
providing their current reliability rates, the service providers
also give the duration of time for which the current relia-
bility rates are guaranteed to remain unchanged. We call
this duration as the expiration time of the revised informa-
tion. Let a represent the action of invoking the WS, WSa,
E be the current set of actions representing the invocations
of WSs whose guarantees have expired, then we define the
maximum VOC, VOCE , as:

V OC
E(s) = max

a∈E
V OCT (·|a,s′)(s) (3)

where V OCT (·|a,s′)(s) is as defined in Eq. 1, and we note
that E ⊆ A. In the worst case, E = A, and all WSs have
expired, in which case, VOCE collapses to VOC∗ defined in
Eq. 2. In the best case, E = φ, and none of the WSs have
expired, in which case VOCE = 0.

The challenge then is to correctly maintain the set, E ,
during the lifetime of the Web process; we show one such
way of doing this next.

5.2 Algorithm
In Fig. 4, we show the algorithm for generating, execut-

ing, and adapting the Web process to a volatile environment
using VOCE . The algorithm takes as input the initial state
of the process, and a policy, π∗, obtained by solving the pro-
cess model (Section 3), which prescribes which WS to invoke
from each state of the process.

As we mentioned before, we associate with each WSa par-

ticipating in the process, an expiration time, t
T (.|a,s′)
exp , dur-

ing which the parameters of the WS such as its reliability
are guaranteed to be fixed. We begin by checking which of
the WSs have expired guarantees (lines 5–10) and updat-
ing the set, E , with those that have expired. The next step
is to compute VOCE (Eq. 3), which will suggest a service

Algorithm for generating Web process

Input: s0 //initial state, π∗ //optimal policy

1. E ← φ //Set of expired WSs
2. t[1..|A|]← 0 //Time counter for each WS
3. s← s0

4. while goal state not reached
5. for all a ∈ A

6. if t[a] > t
T (.|a,s′)
exp

7. E ← E ∪WSa

8. E ← E ∪AddExpiredServices(t[a], E)
9. end if
10. end for
11. if VOCE(s) > QueryCost(T ′(.|a∗, s′))
12. for all a ∈ A
13. t[a]← t[a] + tV OCE (s)

14. end for
15. Query service provider a∗ for revised information

16. Obtain ta
∗

exp

17. t[a∗]← 0
18. for all a ∈ A/{a∗}
19. t[a]← t[a] + tQLag

20. end for
21. Form the new transition function, T ′

22. Calculate policy π∗ using the new MDP model with T ′

23. for all a ∈ A
24. t[a]← t[a] + tπ∗

25. end for
26. E ← E/WSa

27. end if
28. a← π∗(s)
29. Execute WSa

30. Get response of action and construct next state, s’
31. for all a ∈ A
32. t[a]← t[a] + tResponse

33. end for
34. s← s′

35. end while

Figure 4: Algorithm for adaptive Web process using
VOCE .

provider among the expired set, E , to query for revised in-
formation that is expected to bring about most change in
the Web process.

Algorithm AddExpiredServices

Input: t[a], a = 1..|A| //Time counter for each WS,
E //Set of expired WSs

Output: E

1. added ← false //Flag
2. for all a ∈ Ē

3. if t[a] + tV OCE (s) > t
T (.|a,s′)
exp

4. E ← E ∪WSa

5. added← true
6. end if
7. end for
8. if added
9. AddExpiredServices(t[a], E)
10. else
11. return E
12. end if

Figure 5: Anticipating Web services that will expire
while computing VOCE .

Notice that a WS might expire while computing VOCE .
We must anticipate this and add those services in advance
to the set, E , so that they are taken under consideration
while computing VOCE . In line 8, the algorithm invokes
the procedure in Fig. 5, which finds out which WSs among
the unexpired ones (denoted by Ē) may expire while com-
puting VOCE and adds these to the set E . We note that
if a WS is added to E , the time taken to compute VOCE

may increase, during which other WSs may expire. We
consider this by recursively invoking the procedure until
no more WSs are added to the set, E . The time taken
to compute VOCE , tV OCE (s), needs to be anticipated; if
tV OC(s) is the time taken to compute the VOC (Eq. 1),
then tV OCE (s) = |E|tV OC(s). Notice that tV OC(s) is fixed
and may be obtained a’priori.

If VOCE exceeds the cost of querying the service provider,
then we query the provider for the new reliability rates,
which form the new T ′ in the process model. We also add the
time taken to perform the VOCE calculations to the cumu-
lative time counter associated with each WS (lines 11-15).
On querying, in addition to obtaining the possibly revised
information, we also obtain the new expiration times for the
information. Thus, the counter for the WS that is queried
is reset.

Query Lag Time

QLag
t = t

Request QProcessing
t+

Return
t+

t QProcessing

Service

Service
Functional

Information
Providing

t

Client Provider

Return
t

Request

Process

Figure 6: Time elapsed in querying a service
provider for revised information, tQLag

We observe that querying for information is not a constant
time step operation, but must take into account the time
taken for the request to reach the provider, the provider’s
information-providing WS to complete its computations, and
for the the response to arrive back at the process. We de-
note the total time consumed in querying as tQLag, which is
depicted in Fig. 6.

The revised information is integrated into the process
model and a new policy is recomputed to maintain opti-
mality of the Web process. However, recomputation of the
policy is not always necessary, and runtime changes could
be made to the process. Here, the time counters must be
updated again to account for the time taken to recalculate
the policy. Finally, the queried WS is removed from E (lines
21-26). We observe that the times, tQLag and tπ∗ could be
calculated in real-time (online) using timestamps before and
after the calcuations.

Of course, if the query cost exceeds V OCE , then we ignore
the previously mentioned steps, and simply invoke the WS
that the original policy recommends. Obtaining a response
from the invoked WS may not be a constant time operation
but may depend on external factors, as shown in Fig. 7. Let

Service Response Time

Service

Service
Functional

Information
Providing

t

Client Provider

Return
t

Request

Process

t FProcessing

FProcessingt+Returnt+Requestt=t
Response

Figure 7: Time elapsed in obtaining a response to
service invocation, tResponse.

tResponse be the time elapsed, then this time is added to all
the cumulative time counters (lines 28-33).

5.3 Theoretical Results
We first show that given an identical input, adaptation

using VOCE results in the same set of Web processes as
compared to adaptation using VOC∗ [5].

Proposition 1 (Correctness). Given identical poli-
cies and start states, adaptation using VOCE and VOC∗

generate identical Web processes.

Proof. We begin with the definition of VOC∗ (Eq. 2):

V OC∗(s) = max
a∈A

V OCT (·|a,s′)(s)

= max
a∈E∪Ē

V OCT (·|a,s′)(s)

where Ē is the complement of E as mentioned previously.
We consider two cases: (i) If the WS with the maxi-

mum VOC selected for querying has expired, a∗ ∈ E , then
VOC∗ = VOCE for every state, and the Web process will
be adapted identically to when VOCE is used. On the other
hand, (ii) if the WS associated with the maximum VOC
has not expired, then since the revised information is guar-
anteed to be unchanged, VOC∗ = 0, and the Web process
also remains unchanged. Thus, for both the cases, the re-
sulting Web process will be identical to the one generated
when VOCE is used.

We derive the worst case complexity of the adaptation
next. While the worst case complexity is similar to the
complexity of adaptation using VOC∗, on average we ex-
pect significant computational gains from considering expi-
ration times. We demonstrate these gains experimentally in
the next section. A theoretical analysis of the average case
complexity of this approach is part of our future work.

Proposition 2 (Complexity). Let N denote the num-
ber of possible values a given random variable X can take.
The worst case complexity of adaptation using VOCE , as
performed by the algorithm shown in Fig. 4, is:

O(N |X|(N2|X||A|2|H| + tQLag + tResponse)).

Proof. We refer to the algorithm for adaptation using
VOCE shown in Figure 4. The outer while loop (line 4)
will terminate when a goal state is reached. If |X| is the
number of variables with maximum value N , the largest size
of the state space is N |X|. In the worst case, we will traverse

every possible state in the process with the last possible state
reached being the goal state, and will thus the execute the
loop N |X| times.

Within the body of the loop we focus on three operations
in particular. First, lines 5-10 update the set of expired ser-
vices, E . Here, a loop iterates over all WSs (ie,|A|) effectively
having an execution time in the order of O(|A|). However,
each pass of the loop calls the AddExpiredServices proce-
dure (Fig 5), which terminates when no more services are
added to E . In the worst case, this procedure will add one
service to E , and then tV OCE will increase such that one
more service will expire, in which case another service will
be added to E ; this process is repeated until all the services
are added. We may then write the following recurrence for
the runtime of this procedure:

T (|A|) = O(|A|) + T (|A| − 1) (4)

Equation 4 shows that each pass of the loop will take O(|A|)
and, in the worst case, one service will be added to E for each
pass. On solving, this recurrence will run in O(|A|2) time.
Subsequently, lines 5-10 will take O(|A|3). Second, line 11
involves a calculation of VOCE , which in the worst case col-
lapses to a VOC∗ calculation (when all services have ex-
pired). VOC∗, as mentioned in Equation 2, is the maximum
VOC over all services involved in the process, so |A| VOC
calculations are required. Each VOC calculation involves a
comparison between values produced by the optimal policy
and the current policy in the changed environment. Finding
the optimal policy of a process takes O(N2|X||A||H|) time,
where |H| represents the length of the horizon (Similarly, re-
calculation of the policy in line 22 will also take this time).

In total, VOCE will run in O(N2|X||A||H|) time. Finally, we
must also consider tQLag (line 19) and tresponse (line 32), as
these are external to the process and independent of the
VOC calculations.

Thus the total runtime complexity is:

O(V OCE) = O(|N |3|X| × |A|2|H|)+

O(N |X| × |A|3)+

O(N |X| × tQLag)+

O(N |X| × tResponse)

We can eliminate the second term because

N2|X| >> |A|

So now we are left with the following complexity:

O(V OCE) = O(N3|X||A|2|H|)+

O(N |X| × tQLag)+

O(N |X| × tResponse)

which may be rewritten as:

O(N |X|(N2|X||A|2|H| + tQLag + tResponse))

6. EXPERIMENTS
We first outline our SOA in which we wrap the VOCE

computations in WSDL based internal Web services, fol-
lowed by our experimental results on the performance of
the adaptive Web process as compared to the previous ap-
proach.

6.1 Architecture
The algorithm described in Fig. 4 is implemented as a

WS-BPEL [6] flow while all WSs were implemented using
WSDL [12]. To the WS-BPEL flow, we give the optimal
policy, π∗, and the start state as input. Our experiments
utilized IBM’s BPWS4J engine for executing the BPEL pro-
cess and AXIS 2.0 as the container for the WSs. We show
our SOA in Fig. 8.

π

 Service Service Service Service
 2 3 4 5 1

External Services

WSDL WSDL WSDL WSDL WSDL

 Service
 n

WSDL

. . . Service
 6

 Web
 Process
 State

Web Service
Response

Model

Internal
Services

WSDL

Query Cost

 Service

Query Cost

WS−BPEL

Invocation

VOC (s) <

with

Query Cost

Compare

VOC (s) >

VOC (s)ε

ε

ε

ε

Policy
Generate

Calculate

VOC (s)

MDP

VOC (s)
ε

From Policy

Find Service
to Invoke

Web Service

Policy Current

Policy Optimal

π , Current State s

Query
 Web

 Services T’(|a,s’).

Figure 8: SOA for implementing our adaptive Web
process.

Within our SOA, we provide internal WSs for solving the
MDP model of the Web process and generating the policy,
and computing the VOCE . If the VOCE(s) exceeds the cost
of querying a particular service provider (this cost is also
provided as an input), the WS-BPEL flow invokes a spe-
cial WS whose function is to query the service provider’s
information-providing WSs for revised information and the
new expiration times. This information is used to formulate
and solve a new MDP and the output policy is fed back to
the WS-BPEL flow. This policy is used by the WS-BPEL
flow to invoke the prescribed external WS and the response
is used to formulate the next state of the process. This
procedure continues until the goal state is reached.

6.2 Performance Evaluation
The objective of our experimental evaluation is three-fold:

(i) We show the utility of adapting to a (simulated) volatile
environment by comparing against Web processes that do
not adapt and use a fixed policy during execution; (ii) By
being intelligent in selecting which service provider to query,
we show that adaption using VOCE results in Web processes
that incur less average costs as compared to an approach
that randomly selects a service provider to query at ran-
domly selected states of the process; and (iii) the average
execution time of the Web process adapted using VOCE is
less than when the process is adapated using VOC∗ [5], and
varies intuitively as the expiration times vary.

We utilized the MS XBox supply chain and the clinical pa-
tient transfer scenarios (Section 4) for our evaluations. For
the supply chain example, we queried the suppliers for their
current percentage of order satisfaction while in the patient

<wsag:Agreement Name=”xs:MSXBOX GPU Contract”>
.
.
.

<wsag:Context>
<wsag:ServiceProvider>

xs:GPUPreferredSupplierURI
</wsag:ServiceProvider>
<wsag:ExpirationTime>11:59 27 Jan 2007</wsag:ExpirationTime>
<wsag:TemplateId>...</wsag:TemplateId>
<wsag:TemplateName>...</wsag:TemplateName>

</wsag:Context>

<wsag:Terms>
<wsag:All>

<wsag:ServiceDescriptionTerm
wsag:Name=”Rate of GPU Satisfaction”
wsag:ServiceName=”Order GPUs” >
<job:SatisfactionRate>0.4</job:SatisfactionRate>

</wsag:ServiceDescriptionTerm>
.
.
.
</wsag:All>

</wsag:Terms>

< /wsag:Agreement>

Figure 9: An example WS-Agreement document
showing the agreed upon expiration time and the
rate of order satisfaction of a supplier for the XBox
supply chain.

MS XBox Supply Chain

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
r

(T
’(.

|s
,a

))

Probability of Order Satisfaction

Preferred GPU Supplier Availability
Other GPU Supplier Availability

Preferred Console Supplier Availability
Other Console Supplier Availability

(a)

Patient Transfer Pathway

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
r

(T
’(.

|s
,a

))

Probability of Vacancy

Preferred Secondary Caregiver
Secondary Caregiver 2
Secondary Caregiver 3
Secondary Caregiver 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
r

(T
’(.

|s
,a

))

Probability of Vacancy

Preferred Secondary Caregiver
Secondary Caregiver 2
Secondary Caregiver 3
Secondary Caregiver 4

(b)

Figure 10: The probability density functions repre-
senting (a) MS’s belief over the GPU and console
suppliers’ rates of order satisfaction in the XBox
supply chain scenario; (b) the primary caregiver’s
beliefs over the secondary caregivers’ probabilities
of having a vacancy.

transfer pathway, we queried the secondary caregivers for
their current vacancy rates.3 In addition to the revised in-

3Of course, the rate of order satisfaction in the supply chain,
for example, would depend on the quantity of the order and

formation about their services, the providers also guarantee
a duration over which the WS parameter values will remain
fixed. 4 These distributions may be provided by the ser-
vice providers using service-level agreements drawn up us-
ing, say, the WS-Agreement specification [1]. Figure 9 shows
a part of the agreement between MS and the preferred GPU
supplier in the XBox scenario. texp is defined within the
< ExpirationT ime > subtag of the < Context > tag. Here,
the entire agreement will expire on January 27, 2007. Fur-
ther in the document, the < ServiceDescriptionTerm >

subtag of the < Terms > tag defines the provider’s rate of
GPU order satisfaction (probability of 0.4). Thus, MS and
the contracted GPU manager have agreed that any order of
GPUs from MS will be satisfied 40 percent of the time until
the agreement is voided on January 27, 2007.

For the service providers when their information has ex-
pired, we model the manufacturer and primary caregiver’s
beliefs over their possible parameter values, (Pr(T ′(·|a, s′) =
p) in Eq. 1) using beta density functions. Other density
functions such as Gaussians or polynomials may also be
used. Fig. 10(a) shows the beta densities that represent
Microsoft’s distribution over the rate of order satisfaction by
the GPU contract manufacturer ie. T ′(Preferred Supplier
Avail. = Y es | Check Preferred Supplier, Preferred
Supplier Avail. = Unknown), and analogously for the
other suppliers (the Spot Market is assumed to always be
available at a rate of 100 percent). Means of the densities re-
veal that the preferred suppliers of both the GPUs and con-
soles tend to be less reliable in satisfying orders than other
suppliers. Fig. 10(b) shows the density plots over the prob-
ability of a vacancy with the preferred and other secondary
caregivers. For those service providers whose revised infor-
mation has not expired, the manufacturer and caregiver’s
beliefs could be seen as Dirac-delta functions, with the non-
zero value fixed at the probability, p, that was provided at
the time of query. Thus, for this case, the V OC(s) = 0 at
any state of the process. We emphasize that these densities
are marginalizations of the more complex plots that would
account for all the factors that may influence a supplier’s
ability to satisfy an order, such as the time that an order is
placed and quantity of the order.

In order to perform the evaluations, we simulated a volatile
business environment for each of the two problem domains.
For the supply chain, the rates of order satisfaction for the
preferred and other suppliers were assumed to vary accord-
ing to the density plots in Fig. 10. The expiration times were
upper bound to a large time interval and randomly selected
within the bound. The rates of order satisfaction remained
fixed until the corresponding expiration times elapsed, af-
ter which, on query, new expiration times were randomly
selected. Other parameters of the environment such as the
WS invocation costs, tQLag, and tResponse, are as given in
the Table 1. The environment for the patient transfer prob-
lem was simulated analogously (see Table 2).

In Figs. 11(a) and (c), we compare three strategies of
adaptation with respect to the average cost incurred from
the execution of the Web process, as the cost of querying
the service providers is increased. These strategies include

other factors; we assume that these will be provided to the
suppliers.
4In the real world, an example response by a supplier to
a query could be, “We will guarantee meeting 2 of every 3
orders for the next six months”.

Service Cost tQLag(s) tResponse(s)
GPUPreferredSupplier 40 1 5

GPUOtherSupplier 70 1 4

GPUSpotMarket 130 1 3

ConsolePreferredSupplier 40 1 5

ConsoleOtherSupplier 70 1 4

ConsoleSpotMarket 130 1 3

Table 1: Costs, tQLag, and tResponse for the WSs in
the supply chain scenario.

Service Cost tQLag(s) tResponse(s)
PatientCheckIn 10 1 1

InsuranceValidation 10 1 1

PhysicalExam 10 1 2

PreferredSecondaryCaregiver 20 1 3

SecondaryCaregiver2 40 1 3

SecondaryCaregiver3 60 1 3

SecondaryCaregiver4 200 1 3

Table 2: Costs, tQLag, and tResponse for the services
in the patient transfer scenario.

no adaptation and keeping the policy fixed, randomly se-
lecting a single service provider at randomly selected states
of the process, and adapting the Web process using VOCE .
Our methodology consisted of running 100 independent in-
stances of each process within the simulated volatile environ-
ment and plotting the average cost of executing the process
for different query costs. We ensured that the processes us-
ing each of the three strategies received similar responses
from the service providers, and the expiration times were
kept fixed.

We note that these results are analogous to those re-
ported in [5] for VOC∗ and they show that the Web pro-
cess incurs lower average costs when adapted using VOCE ,
thereby establishing the utility of sophisticated adaptation
in volatile environments. In particular, as we increase the
cost of querying, our VOCE based approach performs less
queries and adapts the Web process less. For large query
costs, its performance approaches that of a Web process
with no adaptation because costly queries for revised infor-
mation are not worth the possible change in the cost of the
process due to adaptation. For smaller query costs, a VOC
based approach will query frequently, though not as much
as a strategy that always queries a random provider.

In Figs. 11(b) and (d), we compare the runtimes taken in
generating and executing the Web process. We compare the
execution time of a process without any adaptation (see [4]
for the algorithm), with the execution time of a process
adapted using VOC∗ [5], and the execution time of a process
adapted using VOCE (Fig. 4). As we increase the expiration
times associated with the revised information obtained from
the providers, the process execution time when adapted us-
ing VOCE decreases. Notice that it is upper bounded by the
execution times of a process adapted using VOC∗ and lower
bounded by the runtimes of a process with no adaptation.
This is intuitive because VOC∗ always involves considering
all participating WSs for querying, while no such compu-
tations are carried out in a process that does not adapt.
Both these execution times are invariant with respect to the

MS XBox Supply Chain

 200

 220

 240

 260

 280

 300

 0 5 10 15 20

A
ve

ra
ge

 P
ro

ce
ss

 C
os

t

Query Cost

VOC with Expiration Times
Query Altenatively

Static Policy

(a)

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 P
ro

ce
ss

 E
xe

cu
tio

n
T

im
e

Expiration Times

VOC with Expiration Times
VOC*

Static Policy

(b)
Patient Transfer Clinical Pathway

 150

 160

 170

 180

 190

 200

 210

 220

 0 2 4 6 8 10 12

A
ve

ra
ge

 P
ro

ce
ss

 C
os

t

Query Cost

Query Alternatively
VOC with Expiration Times

Static Policy

(c)

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14

A
ve

ra
ge

 P
ro

ce
ss

 E
xe

cu
tio

n
T

im
e

Expiration Times

VOC with Expiration Times
VOC*

Static Policy

(d)

Figure 11: (a) A comparison of the average process costs incurred when using VOCE based adaption with a
strategy of random adaption and no adaptation. (b) Average process execution times when using the VOCE

based adaptation, VOC∗ based adaptation and no adaptation. (c) and (d) show analogous results for the
patient transfer clinical pathway.

expiration times. Our results demonstrate the inverse rela-
tionship between expiration times and computational effort
expended on adaptation.

Our experiments provide two conclusions: First, by aug-
menting Web process composition with VOC based calcu-
lations, significant information changes in volatile environ-
ments are considered and used to make better decisions
about which services to invoke next. The comparison of
VOCE and static policy implementations illustrate that the
overall average cost of the Web process when adapted is sig-
nificantly less than utilizing a non-changing policy. Second,
we demonstrated that if service providers are able to provide
longer guarantees on their service reliability, less computa-
tional effort needs to be spent on adapting the Web pro-
cesses. This substantiates the intuition that in less volatile
environments as formalized by higher expiration times, less
adaptation is required to keep the Web process optimal.

7. CONCLUSION
Business environments seldom remain unchanged over the

lifetime of a Web process. While the environment may
change in several ways, we considered changes in the quality-
of-service parameters such as rates of order satisfaction in
this paper. Prevalent approaches to WS composition utilize
a pre-specified model of the process environment to formu-
late the Web process. However, in a dynamic process envi-

ronment the model may change over time. We presented a
method that intelligently adapts a Web process to changes in
parameters of service providers, thereby incurring less costs.
While this approach is cost-effective, it may get computa-
tionally intensive. Improving on previous work, we showed
how service parameter guarantees in the form of expiration
times may be used to reduce the computational burden of
adaptation. Using two disparate problem domains, we em-
pirically demonstrated the speedups obtained in executing
and adapting a Web process to changes in service param-
eters when using a method that is cognizant of expiration
times in comparison to an adaptation strategy that ignores
them.

Our future work involves investigating ways in which the
volatility of a process environment may be measured and
formalised. A formal model of the volatility of a process
environment will enable the development of more efficient
approaches for adaptation.

8. ACKNOWLEDGMENTS
This work was supported by a grant from the UGA Re-

search Foundation.

9. REFERENCES
[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,

H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,

S. Tuecke, and M. Xu. WS-Agreement Specification,
2005.

[2] T.-C. Au, U. Kuter, and D. S. Nau. Web service
composition with volatile information. In International
Semantic Web Conference, pages 52–66, 2005.

[3] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and
B. Srivastava. Adaptation in web service composition
and execution. In International Conference on Web
Services (ICWS), Industry Track, 2006.

[4] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma.
Dynamic workflow composition using markov decision
processes. Journal of Web Services Research (JWSR),
2(1):1–17, 2005.

[5] J. Harney and P. Doshi. Adaptive web processes using
value of changed information. In International
Conference on Service-Oriented Computing (ICSOC),
pages 179–190, 2006.

[6] IBM. Business Process Execution Language for Web
Services version 1.1, 2005.

[7] Enabling an adaptable, aligned, and agile supply chain
with biztalk server and rosettanet accelerator.
Technical Report http:// www.microsoft.com /
technet / itshowcase /content / scmbiztalktcs.mspx,
2005.

[8] R. Muller, U. Greiner, and E. Rahm. Agentwork: a
workflow system supporting rule-based workflow
adaptation. Journal of Data and Knowledge
Engineering., 51(2):223–256, 2004.

[9] M. L. Puterman. Markov Decision Processes. John
Wiley & Sons, NY, 1994.

[10] M. Reichert and P. Dadam. Adeptflex-supporting
dynamic changes of workflows without losing control.
Journal of Intelligent Information Systems,
10(2):93–17, 1998.

[11] K. Verma, P. Doshi, K. Gomadam, J. Miller, and
A. Sheth. Optimal adaptation in web processes with
coordination constraints. In International Conference
on Web Services (ICWS), 2006.

[12] Web Services Description Language (WSDL) 1.1,
2001.

[13] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating daml-s web services composition using
shop2. In International Semantic Web Conference,
2003.

